
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

805 | P a g e

www.ijacsa.thesai.org

A Comparative Study of Cloud Data Portability

Frameworks for Analyzing Object to NoSQL

Database Mapping from ONDM's Perspective

Salil Bharany
1*

, Kiranbir Kaur
2
, Safaa Eltayeb Mohamed Eltaher3,

Ashraf Osman Ibrahim
4*

, Sandeep Sharma5, Mohammed Merghany Mohammed Abd Elsalam6

Department of Computer Science and Engg, Lovely Professional University, Phagwara , India
1

Department of Computer Engg. And Technology, Guru Nanak Dev University, Punjab, India
2

Prince Sattam Bin Abdulaziz University, College of Computer Engineering and Sciences, Department of software engineering
3

Creative Advanced Machine Intelligence Research Centre, Faculty of Computing and Informatics, Universiti Malaysia Sabah,

88400 Kota Kinabalu, Sabah, Malaysia
4

Department of Computer Engg. and Technology, Guru Nanak Dev University, Punjab, India
5

Faculty of Computer Science and Information Technology, Alzaiem Alazhari University, Khartoum North 13311, Sudan
6

Abstract—Cloud computing revolves around storing and

retrieving data in a portable manner. However, practical data

portability across multiple Database-as-a-service (DBaaS) cloud

data stores is challenging. This becomes even more complicated

when data needs to be migrated between different types of data

storage, such as SQL and NoSQL databases. NoSQL databases

have gained significant popularity among developers due to their

ability to provide high availability, fault tolerance, and

scalability, making them suitable for managing big data in large-

scale infrastructures. However, the varied data models in NoSQL

databases make it difficult to migrate or port data among data

repositories. Object to NoSQL database mappers (ONDMs)

solves this problem. However, only a few ONDMs are available

for C#.NET development, and the ONDM market used in Java

development could be more stable. To address this issue, we

propose building a middleware solution using the .NET

framework to support cloud data portability, leveraging the

capabilities of ONDMs. In this study, we evaluate several

frameworks and compare them to our suggested middleware

solution through empirical research. Our middleware solution

can perform open network data management (ONDM) and

object-relational mapping (ORM).

Keywords—NoSQl; Portability; Cloud; middleware; platform as

a service; platform services

I. INTRODUCTION

Cloud Computing has become a pre-eminent paradigm for
hosting modern software systems, and the database layer is the
most valuable and extensive layer of a software system [1-2].
The heterogeneity of cloud service providers (CSPs), the data
stores they offer, and the software systems pose substantial
impedance while developing an approach for cloud data
migration. However, the database-related requirements of
modern applications call for polyglot persistence [3]. An
application that leverages persistent polyglot databases is
considerably more arduous to design and implement than an
application using just one backend [7]. The overhead of
configuration, deployment and maintenance keeps increasing
with each DB used. This makes implementing polyglot

persistence quite tricky without the detailed know-how of
involved DBs.

A. Data Models

The use of more than one data model within a single
system has become a usual practice for modern application
development [4]. The cloud computing paradigm supports
both of the types of models for data storage:

1) Relational (SQL) data models: Relational data models

are schema-based, store data in the form of tables, and

maintain ACID (Atomicity, Consistency, Isolation, and

Durability) properties. They prevailed since the 1970s when

E.F Codd proposed they orchestrate the data into tables (or

relations) consisting of rows (also known as records/tuples)

and columns (also known as attributes). Each table has a

unique key called the primary key which identifies each row

and may have a foreign key that represents a primary key of

some other table for cross-reference [5].

2) NoSQL data model: The acrostic for NoSQL means

“Not Only SQL” rather than completely against the traditional

relational databases (DBs), as is commonly misunderstood.

Carl Strozzi1, in 1998 first time, used the term “NoSQL” to

name his open-source relational DB “Strozzi NoSQL”. This

DB used APIs with several plugins and libraries instead of

using SQL for accessing the data. NoSQL data stores are

distinguished in the following four categories based on data

and query models, and persistence design [6]:

a) Key-Value DBs represents a model based on keys-

values and are easy to implement. These are suitable to store

session information, user profiles, or storing shopping cart

data. Examples include Redis, Voldemort, Riak.

b) Document DBs in which semi-structured documents

are stored in JSON format (XML and YAML formats are also

supported), are suited for big data storage and better query

performance. Examples are MongoDB, Apache CouchDB,

and Cosmos DB.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

806 | P a g e

www.ijacsa.thesai.org

c) Column family DBs represent a model for storing

and processing huge amounts of data, which is distributed

over various machines without rigid consistency. Examples

are Apache Cassandra, HBase, and Apache Accumulo.

d) Graph DBs which are suitable for storing

relationships between entities. Examples are Neo4j, OrientDB,

and AllegroGraph.

Each mired data store possesses its specific benefits.
Relational DBs are favored if the data to be stored concerns
financial transactions, as these DBs abide by transactional
properties. On the other hand, the evolution of the Internet,
social networking sites, and Cloud Computing has disputed
the domination of relational DBs as the only selection of
DBMS. Various considerations like prices, the volume of data,
and the speed at which the data is being generated as well as
consumed, dictate how and where the storage and
management of the data.

II. OBJECT TO NOSQL DATABASE MAPPERS (ONDMS)

A single application may need heterogeneous DBs for the
various types of requirements, for example [7]:

 For User Sessions: Redis is best suited for quick access
for reads and writes without having to be durable.

 For financial data and reporting: RDBMS (Relational
database management system) is required as this kind
of data needs transactional updates. Moreover, data
would better fit in a tabular structure.

 Product catalog: MongoDB is best as it supports a lot
of reads and infrequent writes.

 Analytics and user activity logs: Cassandra can better
handle a high volume of writes on multiple nodes.

And there may be many more types of requirements for
application data, leading to the selection of appropriate DBs.
Therefore, the application may require the simultaneous use of
different DBs (relational as well as NoSQL, called Polyglot
persistence) on different cloud platforms and also a data
migration from one kind of data store to another, of similar
type (SQL to another SQL) or dissimilar type (SQL to/from
NoSQL). As there is a looming dearth of standardized query
languages, it poses an adverse technical lock-in while building
applications against the native interfaces of NoSQL data stores
[8]. The solution to evade vendor lock-in caused due to
selecting a particular database technology is to leverage
Object-NoSQL Database Mappers (ONDMs). ONDMs offer a
uniform abstraction interface for heterogeneous NoSQLs.
ONDM frameworks decouple applications from database
specifics and provide data portability [14].

 Handling the conversion of objects to the relational
data model and vice versa.

 Managing persistence to the destination DB.

 Providing software developers with a uniform data
access interface to store and query objects
programmatically.

Our middleware‟s architectural design is a Repository

pattern. Repositories are classes that contain the logic
necessary to access data sources. They consolidate common
data access functions, improving maintainability and
separating database access from the domain model layer.
Because of strong typing, the code that must be implemented
to use our middleware is simplified. This allows us to
concentrate on the business logic rather than the data access
plumbing. ONDMs are developer-centric and let the
developers carry the application abstractions without having to
be cognizant of the database and use these databases without
expecting a level of expertise in those [5]. The benefits of
using ONDMs include simplifying porting of an application to
other NoSQL data stores and database interoperability as well
as polyglot persistence [9]. There are ONDMs called Multi
Data Store Mappers supporting multiple NoSQL data stores
and ONDMs called Single Data Store Mappers supporting
only a particular system [10].

 Kundera2: It is a capable JPA-based object-datastore
mapping library that greatly cuts down the
programming efforts needed to perform CRUD
operations on NoSQL data stores.

 Spring Data3: It is an umbrella project that alleviates
the use of data access technologies, namely relational
and NoSQL, Map Reduce frameworks, as well as
cloud-based data services. It provides a Spring-based
data access programming model that preserves the
special features of the underlying data stores [18].

 DataNucleus4: We also tried another industry-ready
ONDM framework, „Data Nucleus‟ for the
implementation but faced the following difficulties
[19].

 Mongo - The library exposed by DataNucleus and
JavaMongo lib had clashing classes in the same
classpath. This created issues while building the
application [20].

 MySQL - Framework was enhancing model classes
after running the maven enhancement step, as
mentioned in the documentation. Still, it was not able
to detect them at the time of attempting to persist the
object [23].

So, we dropped DataNucleus for the comparison with our
proposed middleware. Our selection of databases to be
implemented tried to find the databases that are not only quite
prevalent and ripe but also have great applicability in specific
fields [22] [24]. MongoDB and Cassandra are the most
prominent NoSQL databases in the market. MongoDB
produces high throughput, and Cassandra supports horizontal
scalability [25]. MongoDB is supported by almost all ONDMs,
followed by Cassandra. Our selection of databases tried to find
the databases that are not only quite prevalent and ripe but
also have great applicability in specific fields [26].

III. IMPLEMENTATION TECHNOLOGY - .NET CORE

We have created a custom data model based on Twitter
data set to benchmark the proposed middleware and the other
frameworks. Some of the key features of .NET Core platform
are highlighted below.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

807 | P a g e

www.ijacsa.thesai.org

 The. NET Core is a new version of Microsoft. NET
Framework is a free, open-source, general-purpose
programming platform. It is a cross-platform
framework that works on Windows, macOS, and Linux
[28].

 The .NET Core Framework may be used to create a
variety of applications such as mobile, desktop, online,
cloud, IoT, machine learning, microservices, and so on.

 The .NET Core is developed from the bottom up to be
a modular, lightweight, fast, and cross-platform
Framework [30]. It offers the essential capabilities
necessary to run a basic.NET Core app. Other
functionalities are available as NuGet packages, which
you may add to your application as needed [30]. As a
result, the.NET Core program performs faster, has a
smaller memory footprint, and is easier to maintain.

It is a new platform that is gaining traction in the industry,
but there are no ONDM frameworks available for it. This is
one of the main reasons to opt .NET Core framework for our
middleware implementation [31]. Although Microsoft
provides its ORM for .NET Core named ENTITY
FRAMEWORK, it is strictly an ORM (that means it is only
for RDBMS mapping to objects and not for NoSQLs). Table I
presents that most of the ONDMs available are for Java
language [32] [34]. Although individual NoSQL database
drivers [14] or wrappers are available for the C# language,
there are no mature ONDM frameworks for C#.

TABLE I. ONDM FRAMEWORKS SUPPORTED BY DIFFERENT OBJECT-
ORIENTED PROGRAMMING LANGUAGES

OOPL ONDM Frameworks Inactive Frameworks

Java

Apache Gora, Kundera,

Data Nucleus, EclipseLink,

Eclipse JNoSQL, Spring

Data, Hibernate OGM,

GORM

Java

Python KEV, pyDAL NA

JavaScript JS Data Resourceful

Node.JS
Thinodium, Bass,
Waterline, JS Data

JugglingDB, Cleverstack,
Node Docu-

PHP
Lithium, Yii framework,

Doctrine
KO3-NoSQL, Vork

C#.NET Slazure, Charisma

Scala Lift Activate Framework

Definitions

 Poly DB: The frameworks support multiple types of
database systems (i.e., relational and NoSQL).

 Wrapper: The library is a wrapper around a database
system; this means it might not be an object-mapper
(e.g. driver). It just interfaces with the application, but
it may not have the capability of object mapping [35].

 ODNM: The framework has objected to NoSQL
database mapping capabilities.

 Strict OR/NDM: The framework strictly has either
ONDM or ORM mapping functionality [36].

OUR proposed middleware [1] is all POLYDB (as it is

supporting multiple DBslike SQL Server, MongoDB, and
Cassandra) as well as ORM and ONDM.

 Mongo - The library exposed by DataNucleus and
JavaMongo lib had clashing classes in the same
classpath. This was creating issues while building the
application.

 MySQL - Framework was enhancing model classes
after running the maven enhancement step, as
mentioned in the documentation. Still, it was not able
to detect them at the time of attempting to persists the
object.

 SpringData - The Challenge was to integrate with the
DBs only. Enough documentation is available to make
the application ready.

 OBDApi - There was code in the application that was
creating issues while building the application. We
needed to remove the unnecessary pieces to make it
work.

 Kundera SQL - No major challenge apart from
integrating with the DB and adding code for our use
case. Analyzed the code to identify how it will work.

In the paper [11], the author introduces and defines the
term “ONDM (Object-NoSQL Datastore Mapper) is a
framework to facilitate the storage and retrieval of persistent
objects in NoSQL datastore systems”. In [6] it has been
studied state-of-the-art ORMs and dedicated ONDMs that are
capable of handling disparate NoSQL data stores. This work
studies the performance of the abstraction layers for NoSQL
data stores with an emphasis on the runtime performance
impact. In the paper [9] also, the authors provide a

performance evaluation of various ONDM frameworks [9].
The main difference to our work is that we perform a more
comprehensive performance evaluation and contemplate with
academic frameworks [12] and [13]). Table IV reveals that
most of the ONDMs are available for Java language. [14]
Although individual NoSQL database drivers or wrappers are
available for C# language, there are no mature ONDM
frameworks for C#. We compare analytically our proposed
middleware with the academic frameworks CDPort and
ODBAPI as well as industry-ready ONDMs viz. Kundera and
Spring Data. The proposed middleware relieves the user of
these saddles of dealing with the specific APIs. All he needs to
do is change the connection string in the application
configuration file (appsettings.json).

A. Our Contribution

We offered a middleware solution created in.NET to allow
cloud data portability, which corresponded to the capability of
ONDMs in terms of performance and functionality. In this
study, we compare our suggested middleware solution with
the other frameworks and conduct an empirical evaluation of
each of the frameworks. This paper demonstrates that our
middleware can serve as both an ORM and an ONDM. Some
of the core contributions have been mentioned below.

1) We discussed various data models used for storing data.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

808 | P a g e

www.ijacsa.thesai.org

2) ONDMs (Object to NoSQL data mappers (Academic

and Industrial)) have been also discussed.

3) Available ONDMs are mostly developed for Java

developers and to the best of us knowledge, no ONDM is

available for .NET developers. We developed .NET ONDM in

previous paper and validated it by comparing it with other

ONDMs (two academic and two industrial).

4) The results we got after experimentation proved our

middleware have comparable performance with respect to the

above said ONDMs.

IV. RELATED WORK

Data portability has been taken up by researchers in the
literature, where it is considered a mechanism that enables the
migration of data as well as enhances interoperability across
multiple heterogeneous cloud platforms [15]. While working
towards data portability among clouds, the requirement of
converting one type of database into another rises owing to the
numerous types (SQL and NoSQL) and data models (key-
value, columnar, document-oriented, and graph) of the
databases offered by the providers. One solution is the
mapping of objects to NoSQLs which essentially corresponds
to the functionality of ODNMs. We have also proposed a
solution to support cloud data portability in [1], which maps
the objects into cloud NoSQLs (MongoDB and Cassandra).
Other solutions include [16]:

 SQL fication of NoSQL databases with SQL-like
wrappers which generally provide various features
corresponding to those of classical relational database
query language while retaining a grammar identical to
that of SQL

 Meta-model approaches which abstract from the data
models by identifying the common concepts in
different NoSQL solutions‟ data models.

The rivet of the middleware is that the application, the
database, and the platform basic services (such as message
queues, email, and SMS service) are so loosely coupled that
each of these can be ported to any of the clouds (supported by
the middleware) without having to rewrite much code in the
application. Although a plethora of research efforts has been
done towards data portability, our proposed work relates to
[12, 13]. To the best of our knowledge, data migration among
clouds (where data previously stored in one cloud is
shifted/copied to another cloud) is not much covered in the
literature. Some notable research works towards data
portability are discussed in Table II.

TABLE II. ANALYSIS OF THE RELATED WORK

Ref.
Solution

approach
Work Done

[17] Design patterns

This paper proposed an effective design pattern

method for shifting data from a columnar DB

(HBase) to a graph DB (Neo4J) and vice versa.
However, this work appears to be only a

suggestion, as no implementation work is provided

in this or any subsequent publications published by
the author (to the best of our knowledge).

[18]

Service
Delivery Cloud

Platform

(middleware)
and common

API

This paper proposed a cloud middleware
infrastructure called SDCP and offered a common

API to deliver three cloud services viz. Storage,

DB, and Notification service. Using JPA (Java
Persistence API) methods, they provided

abstraction for DB access.

[19]

CSAL (Cloud

Storage
Abstraction

Layer)

An abstraction layer is also provided here in order
to give common storage abstraction to diverse

cloud providers. The layer also creates a

namespace that programmers may utilize to
support blobs, tables, and queues.

[20]
Abstraction
layer

This paper presented a mediation-based approach

to integrate SQL and NoSQL DBs to retrieve data
from either of them. Moreover, their proposed

extended SQL can execute join queries as well.

[21]

GUI tool, point

to point the
translator

This thesis work implemented a Graphical User
Interface tool that alleviates the data migration

from relational DB to NoSQL document data

stores.

[22] NoSQLayer

This paper focused on the automatic translation of

SQL queries to NoSQL by proposing a framework

called “NoSQLayer”. The focus here is in query

execution rather than data migration.

[23]

Middleware,

Common

interface

This paper described a subset of SQL commands

for accessing NoSQL DBs with the help of
proposed middleware which uses C# and ANTLR

for parsing SQL.

[24] Heuristic-based

This paper presented a 2-phase transformation
mechanism from relational DB to HBase. The first

phase transformed relational schema to HBase

schema, and the second phase expressed the
relationships of two schemas as a set of nested

schema mappings.

[12]
Common data
model

This paper focused on the challenge of data
portability and proposed a framework called

“CDPort” which is equipped with tools for

conversion, transformation, and data exchange
among disparate data storage models.

[25]
Model
Transformation

The authors developed a tool called ERWin
HAWK for model transformation and

accomplishing data migration. Their work

reckoned the query characteristics of relational
DB, prepared a model transformation algorithm

that extracts the ER model and description tags

from relational DBs, and based on these model
transformations, migrated the data into MongoDB.

[26]
Metamodelling
approach

This paper proposed SOS (Save Our Systems) tool

which provides a uniform Application
Programming Interface based on meta-modeling to

support heterogeneous NoSQL data stores.

[27]
Model-Driven
Engineering

This article addressed the issue of data portability
and offered a system called "CDPort" that includes

tools for data conversion, transformation, and

interchange across heterogeneous data storage
types.

[28]
Model-Driven
Engineering

This paper leveraged MDE to harmonize the

differences among the storage models of two
prominent PaaS namely GAE and Azure. The

authors created a DSL (Domain Specific

Language) to support portable applications. They

also addressed the issue of data portability of the

applications.

[29] Data Adapter

This paper proposed a “Data Adapter” system to
provide data synchronization which uses both

relational and NoSQL DBs at the same time. Their

mechanism offered three modes for query in DB:
Blocking Transformation mode (BT), Blocking

Dump mode (BD mode), Direct access mode (DA

mode).

[30]
Metamodel
(Hegira4Cloud)

This paper proposed an architecture called

“Hegira4Cloud” which provides an intermediate

metamodel for Columnar DBs especially. The

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

809 | P a g e

www.ijacsa.thesai.org

authors also focused on the fault tolerance feature
of the NoSQL portability of Big Data applications.

[31] Metamodel

This dissertation work proposed a metamodel

which is used to convert data to different formats
via an intermediate state (especially JSON).

[32] MetaModel

This article extracted system knowledge using an

ontology called KDM (Knowledge Discovery
meta-model) and utilized many pre-defined

patterns to help users through the application

migration from one cloud platform to another.

[33]
Map Reduce

framework

This paper proposed a framework called

“JackHare” based on Hadoop and HBase which

includes an SQL query compiler, JDBC driver as
well as MapReduce method to process the

unstructured data of NoSQL DB. The data from

relational DB as a source is stored on Hadoop and
HBase and is processed with SQL queries.

[34]
Unified REST

API

This paper presented a unified REST API called

Open-PaaS-DataBase (ODBAPI) to interact with
the different data stores uniformly.

[35]
Cloud data

patterns

This paper presented pattern-based application

refactoring to accomplish the various migration

scenarios of data migration and data portability.

The author in [14] also proposed the common
programming interface but the system does not comply with
cloud data store specifications as our proposed system does.
The reason is that it leverages the XML in conjunction with
SQL for modeling the system [15]. CDPort provided a
common data model to handle different cloud storage services
through a common API whereas, in our middleware, each
datastore has its data model which enables it to detect the
associated datastore of the user-defined model. While it may
seem that a unified data model is better than using different
data models for each datastore but when implemented both the
approaches are fine and yield similar results. By using
different data models, our middleware detects and converts the
objects to their associated data store supported queries/models
with more precision. We ought to improve on it in terms of
implemented clouds and implemented data storage services.
Moreover, a thorough examination of the source code depicts
that it is prone to SQL injection as it is not using
parameterized queries. We are manually implementing the
adapters for each database and if there is any change in the
API of the database, we must update the adapter manually.
But the user using our middleware in his/her application does
not need to change the source code to accommodate this
update. He/she just needs to update the middleware package in
his/her application.

In the paper [13], it includes more latency than our
proposed middleware because the REST API server processes
the request as follows:

1) The user‟s request goes to the REST API server.

2) REST API server processes the request and sends it to

the cloud server.

3) The cloud server sends the response to the REST API

server.

4) REST API server sends a response to the user‟s

applicationHowever, in our proposed middleware [1], all the

database related services are packaged within the user‟s

application and hosted together with the user‟s application.

As NoSQLs are further of various types, it is not practical

to develop a single query language. So, the proposed solution
to this problem is to leverage the middleware to mitigate the
requirement of accessing, storing, and migrating the data from
and within the implemented DBs. If the proposed middleware
is used while developing the cloud application, it extenuates
the implementation details of all the supported DBs. The
middleware supports homogenous SQL migration between
different clouds, homogeneous NoSQL migration between
different clouds, heterogeneous SQL to NoSQL migration in
the same cloud, heterogeneous SQL to NoSQL migration
between different clouds, heterogeneous NoSQL to NoSQL
migration in the same cloud, and heterogeneous category
NoSQL to NoSQL migration between the different clouds.
The factors to be considered for switching the data store and
for migrating the data include the heterogeneous categories of
the source and target DBs (SQL and NoSQL). Even within the
same category, there are different products available e.g., for
SQL, there are MySQL and SQL Server and for document DB,
there are MongoDB and Cassandra. NoSQLs further have
another level of categorization as briefly discussed in previous
section "Object to NoSQL Database Mappers (ONDMs)".

V. THE PROPOSED MIDDLEWARE

Cloud portability is defined by [36] as “the ability of data
and application components to be easily moved and reused
regardless of the choice of cloud provider, operating system,
storage format or APIs.” Out of the categorized scenarios for
cloud portability suggested in [37], only the third and fourth
categories have been considered by the proposed middleware
and this paper describes the benchmarking of the fourth
category particularly.

 Virtual machine portability across cloud providers.

 Portability of virtual machines across cloud providers.

 Portability of applications in the context of
Infrastructure as a Service (IaaS).

 Portability of PaaS apps.

 Data portability between cloud providers.

All the entities of the user models are stored as objects. To
persist these objects in the appropriate data-store, the object‟s
type is determined with the help of reflection (feature of C#
language). A user-defined model is a class that inherits from a
particular middleware meta-model base class (as we
implemented a separate middleware meta-model
corresponding to each type of the supported data store). Fig. 1
shows the decision making about the data store to be used by
checking the middleware‟s meta-model class:

Fig. 1. Decision making procedure to select a data store for persistence.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

810 | P a g e

www.ijacsa.thesai.org

Fig. 2. Data transformation process of the middleware.

The middleware is designed to be extended to support
other data stores also. Fig. 2 shows the data transformation
process of the proposed middleware where the migration tool
takes source and destination data storage service information
as an input [37]. Then the connection with the source storage
service is established to fetch the records and the tool converts
the data from the source to the destination data model [38].
This converted data is inserted into the destination data
storage service. A detailed description of the middleware
implementation is given in [39]. It was observed that
leveraging the middleware makes it quite easy for the user to
achieve the data portability decreasing user‟s efforts greatly
[40]. We have experimentally evaluated the industry ready
ONDMs namely KUNDERA and Spring Data as well as
academic ODNMs namely CDPort and ODBAPI against SQL
and NoSQL (MongoDB and Cassandr data-stores [40]. The
four candidate methodologies have been evaluated using
Twitter dataset and implementing different migration
scenarios. An experiment was carried out in the next section to
determine the effectiveness of the migration [39]. During the
assessment, three cloud platforms were employed (Google
Cloud Platform, Microsoft Azure, and Amazon Web Services)
[41] [42]. It is also claimed that the suggested middleware is
interoperable with various PaaS providers.

VI. RESULTS AND EVALUATION

We compare our proposed middleware analytically with
the academic frameworks viz. CDPort and ODBAPI as well as
industry ready ONDMs viz. Kundera and Spring Data. We
created a custom data model based on the Twitter data set to
benchmark the proposed middleware and the other
frameworks. We created two similar applications, one in Java
language (to evaluate ODBAPI, Kundera, CDPort, and Spring
Data) and another in C#.NET (to evaluate our middleware).
Both these applications have minimal functionality to perform
just the CRUD operations on the Twitter data set. The time
taken to perform these operations using the applications is
noted, and these values of readings are compared to know the
efficiency of each of them. The experiments were executed on
a system with configurations - 2 core machines with 4 GB
RAM. The data in Table III was captured for three different

workloads of 1000, 5000, and 10000 no. of tweets/records. In
this paper we are using three types of scenarios mentioned
below.

Three scenarios are:

1) SQL to/from NoSQL

2) One category of NoSQL to another category NoSQL

3) Even among different SQL data-stores or data stores of

the same category NoSQL
In each experiment scenario, the following operations were

performed on SpringData, Kundera, ODBAPI and CDPort:

1) Add records (tweets/records)

2) Get all records (tweets/records)

3) Update records (tweets/records)

4) Delete records (tweets/records)

 SpringData It is an enterprise-level ORM with solid
developer support and easy integration. SpringData
removes all DAO (Data Access Object)
implementations. Only the DAO‟s interface must be
defined explicitly. By extending the interface, we
obtain all the normal DAO CRUD functions. This
informs Spring Data to look for this interface and
generate an implementation for it. The problem with
Spring Data was merely integrating with DBs [43].

 Kundera - is a "Polyglot Object Mapper"(Single
Application Using Multiple Data Storage Technologies)
with a JPA interfaces [44]. It serves as a JPA
Compliant mapping solution for NoSQL Datastores.
After running our scenario, we observed that “Get All”
for a lower number of records took more time as
compared to “Get All” for a larger number of record
[45] (we ran this scenario multiple times to conclude
this).

 ODBAPI - This ORM is a unified REST-based API.
This API enables to execute CRUD operations on re-
lational and NoSQL data stores. There is no support for
Cassandra, so we ran our scenario for MySQL and
mongo [46]. There was code in the application that was
creating issues while building the application, removed
the conflicting code to make it work. For SpringData,
Kundera, and OBDApi, we ran our scenario by
connecting our test application with local DB instances.
This helped us by realistically compare the framework
performance by not considering network latencies (as
compared to if integrated with Cloud DB).

 CDPort - The CDPort‟s API has been designed to hide
the programmatic difference between the different SQL
and NoSQL database systems [47]. It enables software
developers to easily change their backend cloud- based
data storage without the need to change the software
code. They expose adapters for each cloud DB and thus
client applications need to integrate with these adapters
[48]. Thus, providing a clean way to integrate. It
provides support for cloud DB. Thus, we have
executed our scenario for Amazon RDS and MongoDB
(Amazon Document DB) [49].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

811 | P a g e

www.ijacsa.thesai.org

TABLE III. COMPARISON OF TIME TAKEN TO PERFORM DATABASE OPERATIONS BY THE MIDDLEWARE VS. OTHER FRAMEWORKS

Databases &

Operations Performed

Proposed Middleware

(milliseconds)

KUNDERA

(milliseconds)

ODBAPI

(milliseconds)

Spring Data

(milliseconds)

SQL 1000 5000 10000 1000 5000 10000 1000 5000 10000 1000 5000 10000

INSERT 2442 11208 20056 1310 4666 8458 392 1539 3536 3805 53203 189860

SELECT 34 175 281 413 72 86 7 29 37 10 177 76

UP- DATE 3060 16529 29047 2594 8081 14867 437 2087 4724 4794 88932 334545

DELETE 941 4630 9581 1315 4762 9359 533 1666 3334 3183 52341 178737

MONGO

INSERT 28 320 317 891 1238 2299 547 2000 3089 701 1995 4880

SELECT 33 74 132 487 36 71 19 83 237 82 131 229

UP- DATE 70 324 649 2709 7204 1397 821 13927 51926 525 1861 4116

DELETE 35 172 357 789 2966 5820 809 11624 42935 384 1551 3166

Cassandra

INSERT 149 647 1069 1220 2899 5835 - - - 1221 3640 5853

SELECT 2 3 4 332 143 192 - - - 413 1105 1981

UPDATE 1537 1813 2369 807 2021 3298 - - - 1405 2893 6423

DELETE 1241 1433 1963 672 1880 3499 - - – 797 2004 3931

For SQL databases, ODBAPI performed the best of all the
frameworks which can be seen in readings of Table III and
graph of Fig. 3. For the Cassandra database, INSERT and
SELECT operations took the least time with our middleware
[1], and UPDATE and DELETE operations took comparable
time which can be seen in Fig. 4. The middleware proposed in
this work can be considered as comparable to the two-industry
ready ONDMs (Kundera and Spring Data) and academic
framework (ODBAPI) [50]. For the Mongo database, our
proposed framework performed exceptionally well as seen in
Fig. 5. Comparison between different middleware can be seen
in Table III. The data in Table IV was captured for three
different workloads of 1000, 5000, and 10000 no. of
tweets/records.

As the proposed middleware supports cloud data
portability, another comparison is done with the CDPort
framework which also supports cloud data portability. Except
for the SQL INSERT operation, all other operations took
lesser time with our middleware.

Fig. 3. Comparison of performance of frameworks for SQL CRUD

operations on 1000 tweets.

TABLE IV. COMPARISON OF TIME TAKENUSSING DIFFERENT

WORKLOADS

AWS cloud Proposed Middleware

SQL 1000 5000 10000

INSERT 84577 452959 957680

SELECT 309 1180 2999

UPDATE 111278 499048 913818

DELETE 80317 440182 718930

INSERT 1361 6840 14290

SELECT 1300 4767 11549

UPDATE 1648 11002 13954

DELETE 680 3611 7982

Fig. 4. Comparison of performance of frameworks for Cassandra CRUD

operations on 1000 tweets.

The evaluation included performing CRUD operations on
the Twitter data set with different workloads viz. 1000, 5000,
and 10000 tweet/records through the proposed middleware,
KUNDERA, Spring Data, ODBAPI, and CDPort frameworks
as seen in reading of Table V. The total time taken to perform
these operations were compared which depicted that
middleware performs at par to all these frameworks [40] as
can be seen in Fig. 6 and Fig. 7. We created two similar

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

812 | P a g e

www.ijacsa.thesai.org

applications, one in Java language (to evaluate ODBAPI,
KUNDERA, CDPort, and Spring Data) and another in
C#.NET (to evaluate our middleware). Both these applications
have minimal functionality to perform just the CRUD
operations on the Twitter data set. The time taken to perform
these operations using the application is noted, and these
values of readings are compared to know the efficiency of
each of them [45-46]. We evaluated the impact of the ODNMs
based on application runtime performance as response time is
very crucial for the users‟ experience in the interactive modern
applications. Also, different ONDMs have different runtime
performance. Although adding ONDMs adds to the
performance overhead [1], these provide the benefit of easy
portability across disparate NoSQLs [38-43]. For Document
DB, our middleware performed much better than CDPort
which can be seen in Table IV.

Fig. 5. Comparison of performance of frameworks for MongoDB CRUD

operations on 1000 tweets.

Fig. 6. SQL CRUD Operations on AWS.

Fig. 7. CRUD operations for document DB.

TABLE V. COMPARISON WITH CDPORT

AWS cloud CD Port

SQL 1000 5000 10000

INSERT 13939 139678 183158

SELECT 568 2886 4356

UPDATE 316903 1602408 2312081

DELETE 253408 1298309 1772904

INSERT 11648 12242 113997

SELECT 2032 9426 19406

UPDATE 83975 409502 972376

DELETE 86491 638225 982814

VII. CONCLUSION AND FUTURE SCOPE

Compared to an application that only uses a SQL database,
a combination of the graph, document, and column-based data
stores will have a data access layer that is far more
complicated and will require additional work. The developer's
knowledge and experience are the primary factors that should
be considered when selecting an application's database
management system (DBMS). The vast majority of cloud
service providers make available various services and
application programming interfaces (APIs) that may be used
to access and manage the services they offer. A problem with
interoperability arises due to the variety of cloud services.
Utilizing an intermediary abstraction layer or adhering to pre-
existing standards is the recommended action for resolving
this problem. This article focuses solely on the database
migration process, utilizing a method known as "Object to
NoSQL database mappers. Organizations may require
transferring the system (software and database layer) among
different providers. However, this article only discusses
database migration (ONDMs). Evaluation of the effect of the
proposed solution's implementation on response time and
throughput is used to validate the solution's performance. In
addition, the performance is evaluated in relation to other
methods described in the published research and commercial
solutions currently on the market. According to the findings,
our strategy performs noticeably better than the other
strategies. The work that will be done in the future will

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

813 | P a g e

www.ijacsa.thesai.org

involve adding support for more clouds and additional data
stores that fall into other categories, such as graph and key-
value stores.

REFERENCES

[1] Kaur, S. Sharma, and K.S. Kahlon, “A middleware for polyglot
persistence and data portability of big data paas cloud applications”,
Computers, Materials & Continua, vol. 65, no. 2, pp. 1625-1647, 2020

[2] M.H. Ellison, “Evaluating Cloud Migration Options for Relational
Databases”, 2017

[3] M. Schaarschmidt, F. Gessert, N. Ritter, “Towards automated polyglot
persistence”, in Proc. Lect. Notes LNI), Proc. - Ser. Gesellschaft Fur
Inform, 241 ,73–82, 2015.

[4] J. Castrejón, G. Vargas-Solar, C. Collet and R. Lozano, “ExSchema:
Discovering and maintaining schemas from polyglot persistence
applications”, in Proc. IEEE Int. Conf. Softw. Maintenance,Eindhoven,
Netherlands, pp. 496–499, 2013.

[5] V. Abramova, and J. Bernardino, “NoSQL Databases: MongoDB vs
Cassandra”, In: Proc. Int. Conf. Comput. Sci. Softw. Eng. ACM, Porto,
Portugal, pp. 14–22, 2013.

[6] U. Störl, M. Klettke, T. Hauf, S. Scherzinger, and Schemaless “NoSQL
data stores - Object-NoSQL mappers to the rescue?”, in Proc. Lect.
Notes Informatics (LNI), Proc. - Ser. Gesellschaft Fur Inform,
Bonn Gesellschaft für Informatik ,vol. 241, pp. 579–599, 2015.

[7] M. Fowler, and P. Sadalage, “The future is : NoSQL Databases”, 2012.

[8] S. Bharany, S. Sharma, N. Alsharabi, E. Tag Eldin, and N. A. Ghamry,
“Energy-efficient clustering protocol for underwater wireless sensor
networks using optimized glowworm swarm optimization,” Frontiers in
Marine Science, Frontiers Media SA, vol. 10, 2023.

[9] V. Reniers, A. Rafique, D. Van Landuyt, and W. Joosen, “Object-
NoSQL Database Mappers : a benchmark study on the performance
overhead”, J. Internet Serv. Appl. vol. 8, pp. 1–16, 2017.

[10] J. R. Lourenço, B. Cabral, P. Carreiro, M. Vieira, and J. Bernardino,
“Choosing the right NoSQL database for the job: a quality attribute
evaluation”, J. Big Data., vol. 2, pp. 1–26, 2015.

[11] Reniers, V., Rafique, A., Van Landuyt, D. et al. Object-NoSQL
Database Mappers: a benchmark study on the performance overhead. J
Internet Serv Appl 8, 1 (2017). https://doi.org/10.1186/s13174-016-
0052-x

[12] E. Alomari, A. Barnawi, and S. Sakr, “CDPort: A Portability Framework
for NoSQL Datastores”, Arab. J. Sci. Eng., vol. 40, pp. 2531–2553,
2015.

[13] R. Sellami, S. Bhiri, and B. Defude, “ODBAPI: A unified REST API for
relational and NoSQL data stores”, in Proc. - 2014 IEEE Int. Congr. Big
Data, BigData Congr, Anchorage, AK, USA ,pp. 653–660, 2014.

[14] V. Reniers, D. Van Landuyt, A. Rafique, and W. Joosen, “Object to
NoSQL Database Mappers (ONDM): A systematic survey and
comparison of frameworks”, Inf. Syst, vol. 85, pp. 1–20, 2015.

[15] A. Bansel, “Cloud based NoSQL Data Migration Framework to achieve
data portability”, National College of Ireland, Dublin, Ireland, 2015.

[16] F. Arcidiacono, “Avoiding CRUD operations lock-in in NoSQL
databases: extension of the CPIM library”, Politecnico di Milano
Computer, 2015.

[17] M. N. Shirazi, H.C. Kuan, H. Dolatabadi, “Design patterns to enable
data portability between clouds‟ databases”, in Proc ICCSA , Salvador,
Brazil ,pp.117–120 ,2012.

[18] L.A. Bastião Silva, C. Costa, J.L. Oliveira, A common API for
delivering services over multi-vendor cloud resources, J. Syst. Softw. 86
,2309–2317,2013.

[19] Z. Hill, M. Humphrey, CSAL: A cloud storage abstraction layer to
enable portable cloud applications, in Proc IEEE Int. Conf. Cloud
Comput. Technol. Sci. CloudCom , Indianapolis, IN, USA ,pp. 504–511.
2010.

[20] S. Bharany et al., “Energy efficient fault tolerance techniques in green
cloud computing: A systematic survey and taxonomy,” Sustainable
Energy Technologies and Assessments, vol. 53. Elsevier BV, p. 102613,
Oct. 2022. doi: 10.1016/j.seta.2022.102613.

[21] M. Mughees, Data Migration From Standard SQL to NoSQL, 2013.

[22] L. Rocha, F. Vale, E. Cirilo, D. Barbosa, F. Mourão, A framework for
migrating relational datasets to NoSQL, Procedia Comput. Sci. 51,
2593–2602, 2015 .

[23] J. Rith, P.S. Lehmayr, K. Meyer-Wegener, Speaking in tongues: SQL
access to NoSQL systems, in Proc. ACM Symp. Appl. Comput. , New
York, NY, USA , pp. 855–857,2014.

[24] C. Li, Transforming relational database into HBase: A case study, in
Proc. 2010 IEEE Int. Conf. Softw. Eng. Serv. Sci. ICSESS, Beijing,
China, 683–687, 2010.

[25] T. Jia, X. Zhao, Z. Wang, D. Gong, G. Ding, Model transformation and
data migration from relational database to MongoDB, in Proc. IEEE Int.
Congr. Big Data, BigData Congr , San Francisco, CA, USA ,60–67
,2016.

[26] P. Atzeni, F. Bugiotti, L. Rossi, Uniform access to non-relational
database systems: in Proc. The SOS platform, Lect. Notes Comput. Sci ,
Berlin, Heidelberg.160–174 , 2012.

[27] A. Beslic, R. Bendraou, J. Sopena, J.Y. Rigolet, Towards a solution
avoiding vendor lock-in to enable migration between cloud platforms, in
Proc CEUR Workshop , MIAMI, FLORIDA, USA 1118 , 5–14, 2013.

[28] E.A.N. Da Silva, D. Lucrédio, A. Moreira, R. Fortes, Supporting
multiple persistence models for PaaS applications using MDE: Issues on
cloud portability, in Proc. CLOSER , Lisbon, Portugal, 331–342 ,2015 ,

[29] S. Bharany, S. Sharma, N. Alsharabi, E. Tag Eldin, and N. A. Ghamry,
“Energy-efficient clustering protocol for underwater wireless sensor
networks using optimized glowworm swarm optimization,” Frontiers in
Marine Science, vol. 10. Frontiers Media SA, Feb. 02, 2023. doi:
10.3389/fmars.2023.1117787.

[30] M. Scavuzzo, D.A. Tamburri, E. Di Nitto, Providing big data
applications with fault-tolerant data migration across heterogeneous
NoSQL databases, in Proc.BIGDSE , Austin, TX, USA ,26–32 ,2016.

[31] Curitiba, Data Migration between different data models of NoSql
Databases, 2017.

[32] A. Bansel, H. Gonzalez-Velez, A.E. Chis, Cloud-Based NoSQL Data
Migration, in Proc. Euromicro Int. Conf. Parallel, Distrib. Network-
Based Process , , Heraklion, Greece ,224–231, 2016.

[33] W. C. Chung, H.P. Lin, S.C. Chen, M.F. Jiang, Y.C. Chung, JackHare: a
framework for SQL to NoSQL translation using MapReduce, Autom.
Softw. Eng. ,489–508, 2014 .

[34] R. Sellami, S. Bhiri, B. Defude, Supporting Multi Data Stores
Applications in Cloud Environments, IEEE Trans. Serv. Comput ,59–
71,2016.

[35] S. Strauch, V. Andrikopoulos, T. Bachmann, F. Leymann, Migrating
application data to the Cloud using Cloud data patterns, in Proc.
CLOSER , Aachen, Germany 36–46 ,2013.

[36] Z. Zhang, C. Wu, and D. W. L. Cheung, “A survey on cloud
interoperability,” ACM SIGMETRICS Performance Evaluation Review,
Association for Computing Machinery , vol. 40, no. 4. pp. 13–22, 2013.

[37] G. C. Silva, L. M. Rose, and R. Calinescu, “Towards a Model-Driven
Solution to the Vendor Lock-In Problem in Cloud Computing,” in
Proc.International Conference on Cloud Computing Technology and
Science. IEEE, 2013. Bristol, UK, pp. 711-716, 2013.

[38] S. Bjeladinovic, “A fresh approach for hybrid SQL/NoSQL database
design based on data structuredness,” Enterprise Information Systems,
vol. 12, no. 8–9 ,pp. 1202–1220, 2018.

[39] Ilin, D., & Nikulchev, E.V. Performance Analysis of Software with a
Variant NoSQL Data Schemes. In Proc. MLSD, 1-5,2020. Moscow,
Russia, 2020, pp. 1-5,

[40] A. AGGOUNE and M. S. NAMOUNE, “A Method for Transforming
Object-relational to Document-oriented Databases,” in Proc. ICMIT.
IEEE, 2020. Adrar, Algeria, 2020, pp. 154-158,

[41] M. Li, J. Xu, and L. Han, “Multi-dimensional Analysis of Industrial Big
Data Based JSON Document,” in Proc.IEEE Intl Conf on Parallel and
Distributed Processing with Applications.IEEE, Exeter, United
Kingdom, ,1066-1073, 2020/

[44] Bharany, K. Kaur, S. Badotra, S. Rani, Kavita, M. Wozniak, J. Shafi, and
M. F. Ijaz, “Efficient Middleware for the Portability of PaaS Services

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 10, 2023

814 | P a g e

www.ijacsa.thesai.org

Consuming Applications among Heterogeneous Clouds,” Sensors, vol.
22, no. 13. MDPI AG, p. 5013, 2022.

[45] Nurhadi, R. B. A. Kadir, and E. S. B. M. Surin, “Evaluation of NoSQL
Databases Features and Capabilities for Smart City Data Lake
Management,” in Proc. Lecture Notes in Electrical Engineering.
Springer Singapore, South korea, pp. 383–392, 2021

[46] K. Kaur, S. Sharma, and K. S. Kahlon, “Towards a Model-Driven
Framework for Data and Application Portability in PaaS Clouds,” in
Proc. First International Conference on Sustainable Technologies for
Computational Intelligence. Springer Singapore, pp. 91–105, 2019.

[47] K. Kaur, S. Bharany, S. Badotra, K. Aggarwal, A. Nayyar, and S.
Sharma, “Energy-efficient polyglot persistence database live migration

among heterogeneous clouds,” The Journal of Supercomputing, vol. 79,
no. 1. Springer Science and Business Media LLC, pp. 265–294, 2022.

[48] Y.T. Liao, J. Zhou, C.H. Lu, S.C. Chen, C.H. Hsu, W. Chen, M.F. Jiang,
Y.C. Chung, Data adapter for querying and transformation between SQL
and NoSQL database, Futur. Gener. Comput. Syst. 65, 111–121,2016.

[49] E. M. Onyema et al., “A Security Policy Protocol for Detection and
Prevention of Internet Control Message Protocol Attacks in Software
Defined Networks,” Sustainability, vol. 14, no. 19. MDPI AG, p. 11950,
Sep. 22, 2022

[50] J. Roijackers, H.L.G. Fletcher, XML Query Processing: On Bridging
Relational and Document-Centric Data Stores, in Proc. LNCS , Berlin,
Heidelberg, pp. 135–148, 2013.

